

STUDY GUIDE		
PROGRAM	MBBS-2024	
MODULE TITLE	Foundation-I	
ACADEMIC YEAR	First year M.B.B.S., 2024	
INTRODUCTION	This module has been designed to introduce new entrants to the	
	basic concepts of the MBBS program, which are essential for	
	understanding a number of topics in medical sciences. It aims to	
	provide 'foundation' knowledge to the students so that they are	
	able to apply it when they comeacross more advanced topics. This	
	module hence provides a framework	
	within which learners are expected to build future competencies.	
RATIONALE	Before students go on to complex issues related to organ systems, it	
	becomes necessary for them to have clear concepts underlying	
	them. This module is designed so that it proceeds from simple to	
	more complex basicissues. Concepts dealt with in this module will	
	be revisited in many other modules in the future.	
OUTCOMES	By the end of the module, students should be able to describe main	
	concepts from each of the disciplines taught	
DEPARTMENTS	1. Anatomy,	
INVOLVED	2. Physiology,	
	3. Biochemistry	
MODULE	By the end of the module, students will be able to:	
OBJECTIVES		
<u>LECTURES</u>	I.GENERAL ANATOMY	
ANATOMY	1. Levels of organization of Human Body	

• Describe the organization of the body from cellular to system level

2. Anatomical terminologies: positions and planes

 Differentiate among the various positions and planes of the body

3. Terms of movement

- Define the movements occurring at various joints of body (flexion, extension, abduction, adduction, rotation)
- Identify movements occurring at specific joints (pronation, supination, inversion, eversion)
- Identify the planes at which movements occur

4. Bones-I: Classification

- Classify bone on the basis of shapes and region
- Describe the gross structure of young and adult bone

5. Bones-II: Ossification, Blood supply of long bones, Cartilage, Bone Markings

- Explain the ossification of bone
- Identify the centers of ossification and their significance
- Distinguish between intramembranous and endochondral ossification
- Define bone markings with examples
- List the types of cartilage
- Describe the general anatomical features of each type of cartilage with example

6. General Concept of Muscles I

- List the components of muscular system.
- Classify the muscles according to their fascicular architecture with example

7. General Concept of Muscles II

- Classify the muscles according to direction of fibers and their actions with example
- Explain the principles of innervation and blood supply of muscles.

8. General concept of joints

- Define joint
- Classify the joints on the basis of structure (uniting material) with example
- Define a synovial joint
- List the features of synovial joint
- Classify Synovial joints on the basis of shape of articulating surfaces and degree of mobility
- Explain the principles of innervation and blood supply of synovial joints

9. Nervous system- I: Somatic nervous system and typical spinal nerve

- List the basic divisions of Nervous system
- Define the various components of Central and Peripheral nervous systems (CNS and PNS)
- Describe the structure of Neuron

- Classify neurons on the basis of number of processes and length of fibers
- Define a nerve and its coverings
- Differentiate between myelinated and unmyelinated fibers
- List various types of Neuroglia
- State their functions
- Define a spinal nerve
- Enumerate the spinal nerves in different regions
- Identify their location and site of emergence
- Identify various components of a typical spinal nerve
- Describe the fate of rami
- Describe the distribution of gray rami

10. Nervous system-II: Autonomic Nervous System (ANS)

- Describe the anatomical components of ANS
- Differentiate between sympathetic and parasympathetic systems based on gross structure and distribution

11. Introduction to lymphatic system

- Define lymphatic system, lymphatics and lymph nodes
- Describe the structure of lymph nodes and their general distribution
- List various lymphoid tissues and organs
- Identify large lymphatic channels
- Discuss the role of lymphatics in the spread of cancer

12. Integumentary system

- Define the term integumentary system
- Discuss the functions of the skin

- Differentiate between epidermis and dermis
- Discuss the significance of tension lines
- Discuss the main determinant of skin color
- Identify the appendages of the skin
- Differentiate between superficial & deep fascia

II. GENERAL EMBRYOLOGY

13. Terms of Embryology, Mitosis, Meiosis

- Define Meiosis
- Explain terms related to embryology
- List steps of cell division during mitosis and of meiosis
- Explain the significance of mitosis
- Differentiate first from second meiotic divisions
- Differentiate between mitosis and meiosis
- State the phases of meiotic divisions
- Explain the importance meiosis in both sexes

14. Introduction to Reproductive Organs

- Identify the male & female reproductive organs
- Describe Ovarian cycle
- Relate ovarian cycle with uterine cycle
- Describe the cyclical changes occurring in uterus, preparation of uterus for implantation, and their endocrine control

15. Oogenesis & Spermiogenesis

- Define gametogenesis (oogenesis & Spermatogenesis)
- Describe the process of oogenesis
- Differentiate between primary and secondary oocytes
- Compare the male and female gametes

- Describe the sequence events of spermatogenesis
- Discuss the importance of mitosis & meiosis in spermatogenesis
- List the steps in spermiogenesis
- Differentiate between spermatogenesis & spermiogenesis
- Discuss the importance of mitosis & meiosis in gametogenesis.

16. Transportation of Ovum and fertilization

- Define fertilization
- Explain transportation of sperm and ovum
- Discuss phases, results and clinical aspects of fertilization

17. 1st week of development after fertilization

- Discuss the formation of zygote
- Explain the transport of zygote from ampulla of fallopian tube to the uterine cavity
- Discuss initial stages of development by the process of cleavage.
- Explain the formation of blastocyst

18. 2nd Week of development

- Define implantation
- Explain the formation of outer and inner cell masses
- Discuss the further development of outer cell mass (trophoblast)
- Differentiate syncytiotrophoblast and cytotrophoblast with its microscopic appearance
- Describe the process of implantation (day by day changes)
- State the differentiation of embryonic pole and development of bilaminar germ disc with formation Epiblast and hypoblast, their cavities (amniotic cavity and primary yolk sac)

- Discuss the development of the chorionic sac and Primary chorionic villi
- Enumerate the abnormal sites for implantation (ectopic pregnancy) and the different diagnostic tools

19. 3rd week of Development: Gastrulation, primitive streak and notochord

- Define gastrulation (formation of three germ layers)
- Discuss the development of primitive streak & related congenital anomalies (Sacrococcygeal Teratoma)
- Describe the development of notochordal process, notochord canal, prechordal plate and cloacal membrane
- Describe the location of allantois and its importance
- Discuss the formation of secondary and tertiary chorionic villi
- Describe the development of intra-embryonic coelom

20. 3rd week of Development: Neurulation and somite formation

- Define neurulation
- Describe briefly the events occurring in neurulation
- Describe briefly the formation of somites

21. Embryonic Period

- Define embryonic period
- Describe folding of embryo in median and horizontal planes
- List the derivatives of germ layers
- List events with the corresponding weeks, occurring during the period

22. Fetal Period

- Define fetal period
- Discus the factors affecting fetal period/growth.
- Explain the week by week development of tissues and organs
- Describe the different milestone in development of fetus
- List the causes of fetal loss

23. Amnion, Chorion, umbilical cord & Yolk-Sac, Disorders of amniotic fluid

- List the fetal membranes
- Describe the structure of amnion & chorion
- Explain the formation, circulation and function of amniotic fluid
- Discuss the development of chorion and its complications
- Discuss the disorder related to amniotic fluid volume
- Describe the relationship of twinning (multiple pregnancies) with fetal membranes
- Describe the umbilical cord (morphology, composite structures, positioning and fate)
- Discuss the fate of umbilical vesicle (yolk sac)

24. Placenta

- Describe the changes in the maternal endometrium with formation of decidua and decidual reaction
- Describe the different types of chorionic villi
- Explain the development of placenta, both the fetal and maternal part
- Describe the placental circulation and barrier
- Describe the functions of placenta

25. Prenatal diagnosis

- Discuss prenatal diagnosis
- List the types of prenatal diagnosis
- Differentiate between amniocentesis, chorionic villus sampling, cordocentesis, ultrasonography, maternal AFP levels in terms of indication, time of performance and technique
- Describe the indications and goals of prenatal diagnosis

26. Congenital Malformations

- Define congenital malformation
- List the types of abnormalities (Disruptions, Deformations)
- Discuss the common congenital anomalies

27. Teratogenesis

- Define Teratogenesis
- Discuss the principles governing teratogenesis
- Describe the teratogenic factors and their effects on the developing tissue

III. GENERAL HISTOLOGY

28. Tissue Preparation and staining

- Describe different stages of tissue preparation
- List various types of stains
- Describe Haemotoxylin and Eosin (H&E) staining

29. Cell Membrane

- Identify the structures of cell membrane
- Describe the phospholipid bilayer and its composition
- Explain the Fluid Mosaic Model of cell membrane

30. Cytoplasm & Cell organelles

- Define cytoplasm
- Discuss components and functions of cytoplasm
- Describe various cell organelles

31. Nucleus

- Describe the structure of nuclear membrane
- Explain the component of nucleus and different types of chromatin material

32. Cytoskeleton

- Define Cytoskeleton
- Describe the composition and functions of cytoskeleton
- Enumerate the types, distribution and functions of cytoskeleton
- Describe the details of cytoplasmic filaments and microtubules

33. Cell Cycle

- Define cell cycle
- Explain various stages of cell cycle
- Explain the events of somatic cell division (mitosis)
- Discuss the significance of S phase of cell cycle
- Relate phases of cell cycle with the basis of development of cancer

34. Epithelium

- Describe the types, locations and functions of epithelium
- Describe the structural details of organization of cells in epithelium and other basic tissues of body
- Describe the cell surface modifications.

Relate their origin of germinal layer and their derivatives

35. Cell Junctions

- Define cell junction
- Name the junctions along the lateral and basal surfaces of cells
- List the sites of distribution & components of junctional complex
- Discuss the structure and functions of the five main types of cell junction

36. Glands

- Define glands
- Discuss the general feature and structure of exocrine glands
- Classify exocrine glands on the basis of number of cells, their structure & types of secretions

37. Connective Tissues (Components)

- Define connective tissue
- Differentiate connective from epithelial tissue
- Describe the components of connective tissue

38. Connective Tissues (Classification)

- Classify different types of connective tissue
- Identify different types of connective tissue under the microscope
- State the distribution of each type

39. Histology of muscles

• Describe the histological features of different types of muscular tissue and their location

Histology of Skin

- Define Epidermis & Dermis
- Describe the layers of epidermis along with its cells
- Differentiate between thick and thin skin.
- Describe the layers of dermis and its appendages

BIOCHEMISTRY

TOPIC 1: WATER

1. Chemical nature of water

- Describe the structure and properties of water.
- Discuss the physicochemical properties of water (e.g. surface tension, viscosity, adsorption)
- Explain the role of water as a Solvent
- Describe the role of water in forming molecular bonds.

2. Distribution of water

- Discuss the water distribution and homeostasis
- Explain the clinical aspects of water disturbances

3. pH and Buffers

- Describe the mechanism of dissociation of water and maintenance of normal pH
- Discuss the change in pH due to the addition of a given quantity of acid or base
- Describe the role of buffers in maintaining pH
- Explain the Henderson–Hassel Balch equation

TOPIC 2: CELL

4. Cell membrane

- Describe the biochemical composition
- Describe the functions of the cell membrane

5. Cell organelles

Discuss the biochemical structure and function of each organelle

TOPIC 3: CARBOHYDRATE CHEMISTRY

6. Carbohydrate Classification

- Define carbohydrates with examples
- Classify carbohydrates with examples
- Describe the biochemical role of carbohydrates

7. Monosaccharaides

- Classify Monosaccharaides with examples
- Explain chiral carbon and isomerism with examples
- Explain the properties and functions of Monosaccharaides

8. Disaccharides and Oligosaccharides

- Classify Disaccharides with examples
- Classify Oligosaccharides with examples
- Explain the properties and functions of Disaccharides
- Explain the properties and functions of Oligosaccharides

9. Polysaccharides

- Classify Polysaccharides with examples
- Explain the properties and functions of Polysaccharides
- Describe the clinical importance of Polysaccharides

TOPIC 4: LIPID CHEMISTRY

10. Lipid Classification

- Define Lipids with examples
- Classify Lipids with examples
- Describe the biochemical functions of lipids

11. Fatty acids

- Classify fatty acids with examples
- Explain the chemical structure of fatty acids.
- Describe the properties and functions of fatty acids

12. Simple & Compound Lipids

- Classify simple and compound lipids with examples.
- Explain the chemical structure of simple and compound lipids
- Describe the properties and biological functions of simple and compound lipids
- Discuss the clinical importance of Lipid storage diseases
- Discuss the clinical significance of plasma lipoproteins

13. Steroids & Sterols

- Explain the structure and biochemical importance of steroids and sterols.
- List the sources and functions of Cholesterol
- Discuss the clinical importance of Cholesterol

14. Eicosanoids

- Define Eicosanoids with examples
- Classify Eicosanoids with examples
- Explain the functions of Eicosanoids
- Explain the synthesis of Eicosanoids.
- Discuss the clinical significance of Eicosanoids

TOPIC 5: PROTEIN CHEMISTRY

15. Amino acids

- Describe the structure and classification of amino acids with example
- Explain the properties of amino acids
- Describe the functions of amino acids

16. Peptides and Polypeptides

- Describe the structure and classification of Peptides and Polypeptides with examples
- Explain the characteristics of the Peptide bond
- Describe the functions and biomedical importance of Peptides and Polypeptides

17. Chemistry of Proteins

- Define proteins with examples
- Classify proteins with examples
- List the sources and properties of proteins
- Describe the functions and biomedical importance of individual proteins

18. Protein Structure

Explain the structure of proteins

TOPIC 6: NUCLEIC ACID CHEMISTRY

19. Nucleotides

- Describe the structure and classification of nitrogenous bases with examples
- Compare the structures of nucleotides and nucleosides

- Discuss the biomedical functions of nucleotides
- Explain the biomedical significance of nucleotide derivatives and synthetic analogues.

20. Chemistry of Nucleic acids

- Classify DNA and RNA with examples
- Explain the properties of nucleic acids
- Describe the structure and functions of DNA and RNA

TOPIC 7: ENZYME CHEMISTRY

21. Classification of Enzymes

- Define enzymes with examples
- Classify enzymes with examples
- Describe the structure and properties of Enzymes
- Explain Co-enzymes, Co factors, zymogens, prosthetic group and Isoenzymes

22. Enzyme Kinetics

- Explain the energy of activation
- Describe the two hypothesis enzyme substrate binding.
- Describe the mechanism of action of enzymes
- Explain the Michaelis Menten Model of enzyme kinetics

23. Factors affecting enzyme activity

- Define enzyme inhibitors with examples
- Classify enzyme inhibitors with examples
- Discuss factors inhibiting and promoting enzyme activity

24. Clinical Enzymology

Explain the diagnostic importance of enzymes and isoenzymes

- Outline different ways of measuring plasma enzymes
- List enzymes and isoenzymes commonly assayed for diagnostic purposes
- Discuss the clinical importance of isoenzymes of LDH, CPK,
 Troponin, Alkaline phosphatase and Aldolase

TOPIC 8:

25.VITAMINS

- Define vitamins with examples
- Classify vitamins with examples
- List the sources, daily requirement, digestion absorption of individual vitamins
- Discuss the overall role of vitamins and their importance in normal body functions
- Describe the chemical structure and functions of individual vitamins
- Describe the clinical significance of deficiency and toxicity of vitamins

PHYSIOLOGY

1. Body Fluid Compartments

- Describe functional organization of human body.
- Compare the normal ranges, physical characteristics of Extracellular and Intracellular Fluid Compartments

2. Homeostasis and control system of body

- Define homeostasis and maintenance of internal environment by positive and negative feedback mechanism.
- Explain the feedback mechanisms with the help of examples.
 - Discuss the role of feedforward mechanism in homeostasis.

3. Functional importance of Cell membrane

- Describe the structure and fluid mosaic model of cell membrane and its functional importance.
- Explain the functional importance of lipids, integral proteins and carbohydrates in the cell membrane.

4. Cell organelles 1

Describe the structure and functions of Ribosomes,
 Endoplasmic reticulum and Golgi apparatus

5. Cell organelles 2

Describe the structure and functions of Lysosomes,
 Mitochondria, peroxisomes and cytoskeleton

6. Transport across cell membrane (Passive)

- Define osmolarity, osmolality and osmotic pressure along with their functional importance and normal values
- Describe the types of passive transport across the membrane:
 Simple diffusion, Facilitated diffusion and Osmosis.

7. Transport across cell membrane (Active)

- Describe the types of Active transport across cell membrane:
 Primary and Secondary active
- Transport.
- Explain the role of sodium potassium pump in transport mechanism.
- Discuss secondary active transport along with the examples of co-transport and counter-transport

8. Bulk transport

Explain the process of endocytosis, exocytosis and transcytosis.

	JINNAH SINDH MEDICAL UNIVERSITY
	9. Cell signaling mechanism
	Discuss the activation of receptors and second messengers by
	cell signaling.
	Explain the various types of membrane receptors and their up
	regulation/down regulation.
	10. Genetic control of cell function
	Describe the structure of DNA and functional importance of
	genetic code.
	Elaborate the process of DNA replication and transcription
	11. Genetic control of protein synthesis
	Describe types of RNA and their function.
	Explain the process of translation.
	12. Cell cycle
	Explain the genetic control of cell reproduction.
	Discuss different phases of cell mitosis and meiosis.
	13. Locomotion of cell and Apoptosis
	Define the following:
	✓ Ameboid and Ciliary movements.
	✓ Apoptosis and its mechanism.
	14. Introduction to Autonomic Nervous System
	Explain the functional division of Autonomic Nervous System
	Discuss the role of sympathetic and parasympathetic nervous
	system, their neurotransmitters and receptors in body systems.
PRACTICALS	1. Introduction to Microscopy
ANATOMY	Identify different parts of microscope
	2. Cell

	JINNAH SINDH MEDICAL UNIVERSITY
	Identify various types of cell
	3. Epithelium
	Identify various types of epithelium under microscope
	4. Glands
	Identify various glands
	5. Connective tissue
	Identify connective tissue cell, fibers under microscope
	6. Muscles
	 Identify the various types of muscular tissues
	7. Skin
	Identify different layers of skin under the microscope
BIOCHEMISTRY	1. Introduction to Biochemistry Lab: Lab protocols & Solutions
	Explain the Biochemistry Laboratory protocols & Lab hazards
	 Identify the signs and symbols related to Laboratory hazards
	• Prepare different types of Solutions (Normal, Molar, Molal,
	Percent)
	• Identify the clinical uses and hazards of different types of
	solutions
	Correlate the laboratory investigations with relevant clinical
	conditions
	2. Carbohydrates practical 1: Detection of Carbohydrates and
	Polysaccharides
	Outline the scheme for detection of carbohydrates in a sample
	Detect Carbohydrates in the given sample
	Detect Polysaccharides in the given sample
	3. Carbohydrates practical 2: Detection of Mono & Disaccharides
	Detect Monosaccharides in the given sample
	 Detect Disaccharides in the given sample

Correlate the laboratory investigations with relevant clinical conditions

4. Proteins practical 1: Detection of Proteins

- Outline the scheme for detection of Proteins in a sample
- Identify the chemical tests and bio-techniques to detect proteins
- Detect Proteins in the given sample (General tests)
- Correlate the laboratory investigations with relevant clinical conditions

5. Proteins practical 2: Detection of individual amino acids

- Identify the chemical tests and bio-techniques to detect the different amino acids
- Detect individual amino acids in the given sample
- Correlate the laboratory investigations with relevant clinical conditions

6. Proteins practical 3: Detection of individual Proteins

- Detect individual Proteins in the given sample
- Correlate the laboratory investigations with relevant clinical conditions

7. Lipids: Detection of Lipids

- Outline the method for detection of Lipids in a sample
- Identify the chemical tests and bio-techniques to detect Lipids
- Detect Lipids in the given sample
- Correlate the laboratory investigations with relevant clinical conditions

8. Enzymes: Detection of Factors affecting Enzyme activity

 Outline the scheme for detection of factors affecting enzyme activity

	Identify the chemical tests and bio-techniques to detect the
	factors affecting enzyme activity
	Detect the effect of factors affecting the activity of salivary
	amylase
PHYSIOLOGY	1. Extracellular fluid
	Identify the effects of osmotic variations in Extracellular fluid
	(ECF) on cell
INTERNAL	Internal assessment will be according to institutional policies.
ASSESSMENT	
A33E33MEINI	Internal evaluation carries 20% weightage in summative semester
	examination.
ANNUAL	Annual exam will consist of MCQs (One Correct & One Best) and
EXAMINATION	OSPE (observed + unobserved stations)
ANATOMY	SUGGESTED READINGS
	RESOURCES/TEXTBOOKS
	A. GROSSANATOMY
	1. K.L. Moore, Clinically Oriented Anatomy
	B. HISTOLOGY
	B. Young J. W. Health Wheather's Functional Histology
	C. EMBRYOLOGY
	1. Keith L. Moore. The Developing Human
	Langman's Medical Embryology
BIOCHEMISTRY	Harper's Illustrated Biochemistry
	2. Lippincott's Illustrated reviews of Biochemistry
	3. Lehninger's Principles of Biochemistry
	4. Biochemistry by Devlin
PHYSIOLOGY	A. TEXTBOOKS
	Textbook of Medical Physiology by Guyton and Hall

- 2. Human Physiology by Lauralee Sherwood
- 3. Berne & Levy Physiology
- 4. Best &Taylor Physiological Basis of Medical Practice
- B. REFERENCEBOOKS
 - 1. Ganong's Review of Medical Physiology